Artificial

Bidirectional Generative Framework for Cross-domain Aspect-based Sentiment Analysis

Yue Deng * 1,2 Wenxuan Zhang †1 Sinno Jialin Pan^{2,3} Lidong Bing¹
¹DAMO Academy, Alibaba Group ² Nanyang Technological University, Singapore

³Chinese University of Hong Kong

{yue.deng, saike.zwx, l.bing}@alibaba-inc.com

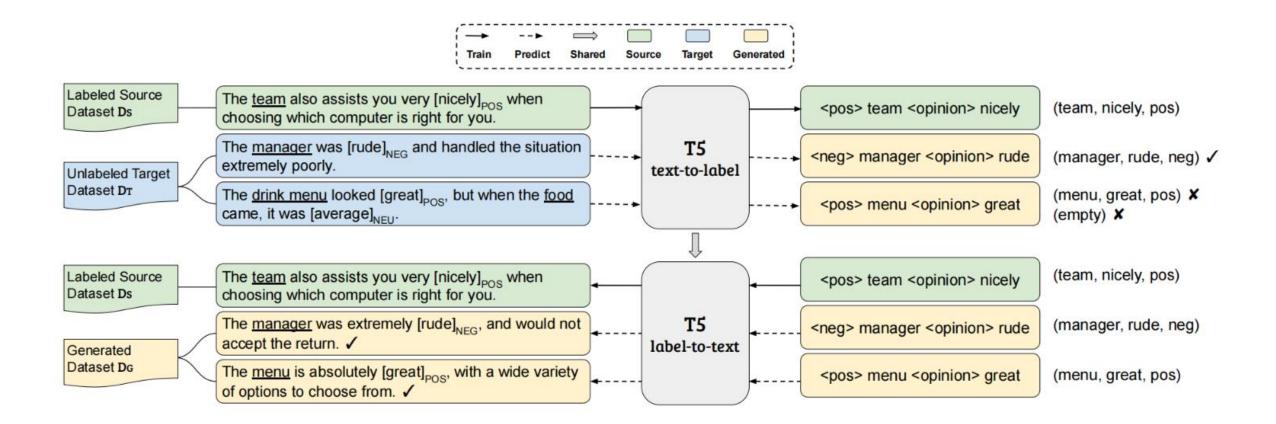
sinnopan@cuhk.edu.hk

Code: https://github.com/DAMO-NLP-SG/BGCA

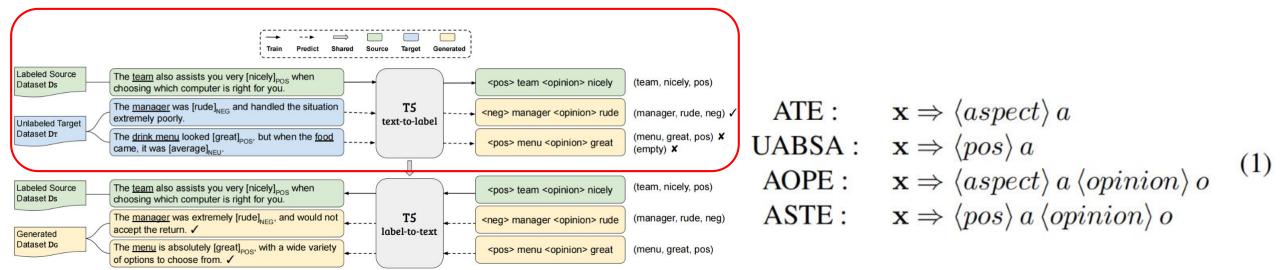
2023. 5. 25 • ChongQing

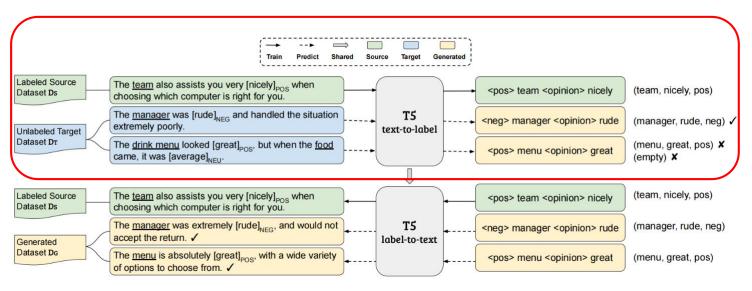
—— ACL 2023

- 1.Introduction
- 2.Overview
- 3.Methods
- 4. Experiments

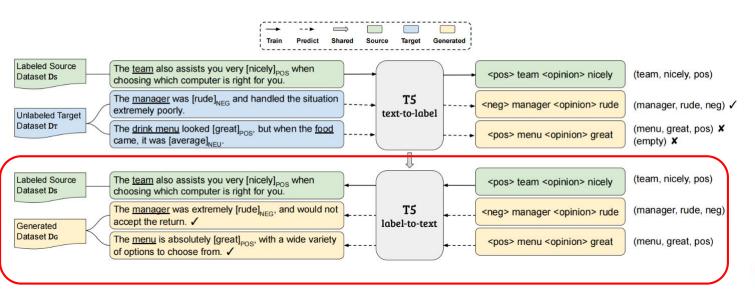


Introduction


- 1 电子产品领域:这个屏幕不错,很<u>清晰</u>。
- 2 餐饮领域:他们的服务不错,很周到。


Aspect: — Opinion: —

Overview


$$\mathcal{L} = -\sum_{i=-1}^{l} \log p\left(y_i \mid \mathbf{x}; y_{\leq i-1}\right), \qquad (2)$$

$$\hat{y}_i^{\mathcal{T}} = \underset{y_j \in \mathcal{U}}{\operatorname{argmax}} \ p\left(y_j \mid \mathbf{x}^{\mathcal{T}}; \hat{y}_{\leq i-1}^{\mathcal{T}}\right), \quad (3)$$

$$\mathcal{U} = \{w_i\}_{i=1}^n \cup \{\langle m_j \rangle\}_{j=1}^k.$$

$$\mathcal{L} = -\sum_{i=-1}^{l'} \log p\left(x_i \mid \mathbf{y}; x_{\leq i-1}\right), \quad (5)$$

$$\hat{x}_i^{\mathcal{T}} = \underset{x_j \in \mathcal{V}}{\operatorname{argmax}} \ p\left(x_j \mid \hat{\mathbf{y}}^{\mathcal{T}}; \hat{x}_{\leq i-1}^{\mathcal{T}}\right), \qquad (6)$$

 \mathcal{V} denotes the vocabulary of the model.

Task	Output Tuple	Example Output
ATE	(a)	(apple)
UABSA	(a,s)	(apple, positive)
AOPE	(a, o)	(apple, sweet)
ASTE	(a, o, s)	(apple, sweet, positive)

Task	ATE&UABSA			AOPE			ASTE					
lask	L	R	D	S	L14	R14	R15	R16	L14	R14	R15	R16
Train	3045	3877	2557	1492	1035	1462	678	971	906	1266	605	857
Dev	304	387	255	149	116	163	76	108	219	310	148	210
Test	800	2158	1279	747	343	500	325	328	328	492	322	326

Table 2: The statistics of ATE and UABSA

Methods	$S \rightarrow R$	$L{ ightarrow}R$	$D \rightarrow R$	$R \rightarrow S$	$L \rightarrow S$	$D \rightarrow S$	$R \rightarrow L$	$S \rightarrow L$	$R \rightarrow D$	$S \rightarrow D$	Avg.
<u>ATE</u>											
Hier-Joint [†]	46.39	48.61	42.96	27.18	25.22	29.28	34.11	33.02	34.81	35.00	35.66
$RNSCN^\dagger$	48.89	52.19	50.39	30.41	31.21	35.50	47.23	34.03	46.16	32.41	40.84
$AD ext{-}SAL^\dagger$	52.05	56.12	51.55	39.02	38.26	36.11	45.01	35.99	43.76	41.21	43.91
$\mathrm{BERT_{B}\text{-}UDA}^{\dagger}$	56.08	51.91	50.54	34.62	32.49	34.52	46.87	43.98	40.34	38.36	42.97
BERT _B -CDRG [†]	56.26	60.03	52.71	42.36	47.08	41.85	46.65	39.51	32.60	36.97	45.60
GAS	61.24	53.02	56.44	31.19	32.14	35.72	52.24	43.76	42.24	37.77	44.58
BERT _E -UDA ^{†*}	59.07	55.24	56.40	34.21	30.68	38.25	54.00	44.25	42.40	40.83	45.53
$BERT_E$ - $CDRG^{\dagger *}$	59.17	68.62	58.85	47.61	54.29	42.20	55.56	41.77	35.43	36.53	50.00
BGCA _{text-to-label}	60.03	55.39	55.83	36.02	35.43	37.73	54.18	43.45	42.49	37.89	45.84
BGCA _{label-to-text}	63.20	69.53	65.33	45.86	44.85	54.07	57.13	46.15	37.15	38.24	52.15
UABSA											
Hier-Joint [†]	31.10	33.54	32.87	15.56	13.90	19.04	20.72	22.65	24.53	23.24	23.72
$RNSCN^\dagger$	33.21	35.65	34.60	20.04	16.59	20.03	26.63	18.87	33.26	22.00	26.09
$AD ext{-}SAL^\dagger$	41.03	43.04	41.01	28.01	27.20	26.62	34.13	27.04	35.44	33.56	33.71
AHF	46.55	43.49	44.57	33.23	33.05	34.96	34.89	29.01	37.33	39.61	37.67
$BERT_B$ - UDA^{\dagger}	47.09	45.46	42.68	33.12	27.89	28.03	33.68	34.77	34.93	32.10	35.98
BERT _B -CDRG [†]	47.92	49.79	47.64	35.14	38.14	37.22	38.68	33.69	27.46	34.08	38.98
GAS	54.61	49.06	53.40	30.99	29.64	33.34	43.50	35.12	39.29	35.81	40.48
BERT _E -UDA ^{†*}	53.97	49.52	51.84	30.67	27.78	34.41	43.95	35.76	40.35	38.05	40.63
BERT _E -CDRG ^{†*}	53.09	57.96	54.39	40.85	42.96	38.83	45.66	35.06	31.62	34.22	43.46
BGCA _{text-to-label}	54.12	48.08	52.65	33.26	30.67	35.26	44.57	36.01	41.19	36.55	41.24
BGCA _{label-to-text}	56.39	61.69	59.12	43.20	39.76	47.94	45.52	36.40	34.16	36.57	46.07

Methods	R14→L14	R15→L14	R16→L14	L14→R14	L14→R15	L14→R16	Avg.
AOPE							
SDRN	45.39	37.45	38.66	47.63	41.34	46.36	42.81
RoBMRC	52.36	46.44	43.61	54.70	48.68	55.97	50.29
SpanASTE	51.90	48.15	47.30	61.97	55.58	63.26	54.69
GAS	57.58	53.23	52.17	64.60	60.26	66.69	59.09
BGCA _{text-to-label}	58.54	54.06	51.99	64.61	58.74	67.19	59.19
BGCA _{label-to-text}	60.82	55.22	54.48	68.04	65.31	70.34	62.37
<u>ASTE</u>							
RoBMRC	43.90	40.19	37.81	57.13	45.62	52.05	46.12
SpanASTE	45.83	42.50	40.57	57.24	49.02	55.77	48.49
GAS	49.57	43.78	45.24	64.40	56.26	63.14	53.73
BGCA _{text-to-label}	52.55	45.85	46.86	61.52	55.43	61.15	53.89
BGCA _{label-to-text}	53.64	45.69	47.28	65.27	58.95	64.00	55.80

Methods	ATE	UABSA	AOPE	ASTE	Avg.
$BGCA^\dagger$	52.15	46.07	62.37	55.80	54.10
self-training*	46.13	41.56	61.33	55.99	51.25
- continue*	46.63	42.22	58.56	54.70	50.53
 w/o sharing 	52.08	44.72	61.64	55.76	53.55

Sentence from R	Prediction	Label-to-text Generation		
The [service] _{POS} was good to excellent	(service, POS)	The [service] _{POS} I received from		
along with the [attitude] _{POS} .	(service, FOS)	Toshiba was excellent.		
[Bottles of wine] _{POS} are cheap and good.	(bottles, POS)	I love the [bottles] _{POS} they are made out		
[Bottles of whie] _{POS} are cheap and good.	(bottles, ros)	of.		
Our [waitress] _{NEU} wasn't mean, but not	(weitress NEC)	The [waitress] _{NEG} didn't even answer		
especially warm or attentive either.	(waitress, NEG)	my question.		

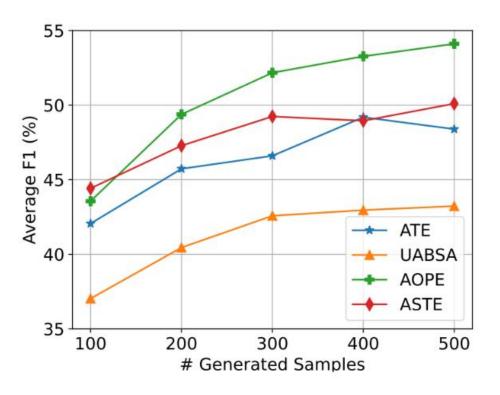


Figure 2: Comparison results of our method with a different number of generations.

Group	A	ΓE	UABSA		
Group	text→label	label→text	text→label	label→text	
Zero	45.31	36.48	50.02	39.18	
Single	41.53	47.99	35.02	43.17	
Multiple	26.61	37.20	21.99	29.59	

Table 7: Comparison results on cross-domain ATE and UABSA tasks over different sentence groups containing zero, single, or multiple aspects respectively.

Thanks!